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Contributions
• Introduce a fine-grained layer attention method to qualitatively and 

quantitatively evaluate the contribution of individual encoder layers.
• Demonstrate that the encoder embedding layer is essential for fusing 

encoder layers, which consolidates conflicted findings reported by 
previous studies.

• Propose a simple yet effective SurfaceFusion approach to directly exploit 
the encoder embedding layer for the decoder, which produces more 
expressive bilingual embeddings.

Problems
• Recent studies reveal that fusing the intermediate encoder layers 

(EncoderFusion) is beneficial for sequence-to-sequence (Seq2Seq) models, 
such as layer aggregation [1], layer-wise coordination [2] and layer attention
[3]. Despite its effectiveness, not much is known about how fusing encoder 
layer representations work. 

• Other studies show that attending to lower encoder layers (excluding the 
encoder embedding layer) does not improve model performance [4], which 
is conflicted with existing conclusions. It is still unclear why and when fusing 
encoder layers should work in Seq2Seq models.

Improving EncoderFusion: SurfaceFusion

Source Representation Bottleneck
Seq2Seq decoder only takes the abstract representations at uppermost layer as input,
which ignores other usefully surface representations at other layers. We hypothesize 
that its limited representation capacity may not sufficiently model those surface features 
from lower encoder layers, especially the embedding layer. We call such an issue as 
source representation bottleneck.
Fine-grained Layer Attention (FGLA)
We propose FGLA to investigate the source representation bottleneck. Specifically,
FGLA replaces the layer-agnostic source representation 𝑋! with the layer-aware 
representation 𝑆" for each decoder layer 𝑌" :

where ⊙ denotes an element-wise multiplication, and 𝑤",$,% denotes an element in the 
learnable attention weight 𝑾 ∈ 𝑹&× !() ×* , where 𝐷 is the dimensionality of the 
source representation. 

Published as a conference paper at ICLR 2021

(En-De; 4.5M instances), and large-scale WMT14 English-French (En-Fr; 36.0M instances). The
tokenized BLEU score (Papineni et al., 2002) was used for all the translation tasks.

Text summarization takes a long-text document as input, and outputs a short and adequate summary
in the same language. We used the CNN/Daily Mail corpus (0.3M instances). We evaluated with the
standard ROUGE metric (Lin, 2004), i.e. Rouge-1, Rouge-2, and Rouge-L.

Grammatical error correction takes a sentence with grammatical errors as input, and outputs a
corrected sentence. We used CONLL14 datasets as the testbed (1.4M instances). The MaxMatch
(M2) scores (Dahlmeier & Ng, 2012) were used for evaluation with precision, recall, and F0.5 values.

The machine translation task has distant input/output domains (i.e. in different languages), while
the other tasks have similar input/output domains (i.e. in the same language). We used Trans-
former (Vaswani et al., 2017) as the Seq2Seq model. Details of the datasets and model training are
listed in Appendix A.1.

3 BEHAVIOR OF ENCODERFUSION

In this section, we first formulate our research hypothesis of source representation bottleneck (§3.1)
that EncoderFusion expects to solve. In the following subsections, we propose a fine-grained layer
attention model (§3.2) to validate our hypothesis on well-designed experiments (§3.3).

3.1 SOURCE REPRESENTATION BOTTLENECK

Seq2Seq models learn more abstract features with the increase of layer level (i.e. X0 ! XN and
Y0 ! YM ) (Belinkov et al., 2017). It has been extensively validated that a reasonable use of both
the abstract representations (at higher-level layers) and the surface representations (at lower-level
layers) is beneficial for various NLP (Lu & Li, 2013; Hu et al., 2014; Dou et al., 2018; Peters et al.,
2018) and CV (Long et al., 2014; Pinheiro et al., 2016; Lin et al., 2017; Chen et al., 2018a) tasks.

However, the Seq2Seq decoder only takes the abstract representations at uppermost layer XN as
input (Equation 2), while ignores other usefully surface representations at other layers Xn (n < N ).
Although XN has encoded surface features from low-level representations through layer-by-layer
abstraction and residual connections, we hypothesize that its limited representation capacity may not
sufficiently model those surface features from lower encoder layers, especially the embedding layer.
We call such an issue as source representation bottleneck.

3.2 FINE-GRAINED LAYER ATTENTION

For each decoder layer, layer attention (Bapna et al., 2018; Peters et al., 2018) assigns normalized
scalar weights to all encoder layers, providing a direct way for evaluating the contributions made by
each encoder layer. However, the capacity of a simple scalar weight is limited, leading to insufficient
evaluation of the contributions.

Motivated by fine-grained attention (Choi et al., 2018) that each element of a context vector receives
an individual attention weight, we propose a fine-grained layer attention model to combine the
advantages of both techniques. This allows us to more convincingly evaluate the contribution of
individual encoder layer to the model performance. Besides, the nature of fine-grained attention
enables us to give in-depth analyses of the representation power in §3.3.

Specifically, we replace the layer-agnostic source representation XN with the layer-aware representa-
tion Sm for each decoder layer Ym, which is calculated as:

Sm =
NX

n=0

ŵm,n �Xn, ŵm,n =
⇥
ŵm,n,1, . . . , ŵm,n,D

⇤
, ŵm,n,d =

exp(wm,n,d)
PN

n0=0 exp(w
m,n0,d)

where � denotes an element-wise multiplication, and wm,n,d denotes an element in the learnable
attention weight W 2 RM⇥(N+1)⇥D, where D is the dimensionality of the source representation.
When n = 0, we use the word embeddings Xemb without position embeddings as X0, which has
been empirically proved effective. We applied a regularization technique – DropConnect (Wan et al.,
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2013) to the attention weight W for a stable training, which randomly drops each wm,n,d with a
probability p and divides W by 1� p. We set it to 0.3 for all the experiments.

Table 2 lists the results. The proposed fine-grained layer attention model consistently outperforms
the vanilla Transformer across Seq2Seq tasks, demonstrating the benefit of fusing surface features at
lower-level layers.

Table 1: Results of existing encoder layer fusion
methods on the WMT16 Ro-En translation task.

Model BLEU
Vanilla Transformer 33.80

Layer aggregation 34.05
Layer-wise coordination 34.19
Coarse-grained layer attention 34.32

Fine-grained layer attention 34.45

We evaluated several EncoderFusion methods in
Table 1, including layer aggregation (Dou et al.,
2018), layer-wise coordination (He et al., 2018),
and coarse-grained layer attention (Bapna et al.,
2018). Their results are respectively 34.05,
34.19, and 34.32, which are all lower than that
of fine-grained layer attention (34.45). Based
on these experimental results, we thus choose
fine-grained layer attention as a representative
of EncoderFusion in the following analyses.

3.3 BEHAVIOR CHANGES ACROSS ENCODER LAYERS

In this section, we investigate whether the surface features at lower encoder layers (especially the
encoder embedding layer) contribute to the model performance via carefully designed experiments.

(a) Translation: Ro-En (b) Summarization (c) Correction

Figure 1: Attention distribution that each decoder layer (x-axis) attending to encoder layers (y-axis).

Visualization of layer attention We first visualize the learned layer attention distribution in Fig-
ure 1, in which each weight is the averaged attention weights over all dimensions. Generally, a higher
weight denotes more contribution of an encoder layer to the corresponding decoder layer.

Clearly, in all tasks higher decoder layers especially the uppermost ones pay more attention to the
encoder embedding layer, which indicates that the surface representations potentially bring some
additional useful features to the model performance. Voita et al. (2019); Wang & Tu (2020) reveal
that the upper layers of decoder are responsible for the translation part while the lower layers for
the language modeling part. Similarly, our results show that surface representations might play an
important role in learning to translate source tokens.

Among the Seq2Seq models, there are still considerable differences in the attention heatmaps. In
the summarization model, almost all decoder layers focus more on the encoder embedding layer,
while in the other two models the intermediate decoder layers pay more attention to the higher-level
encoder layers. This is consistent with the findings of Rothe et al. (2019), in which they reveal that
the summarization task, as a typical extractive generation task, tends to use more surface features
to generate extractive summaries. In contrast, both machine translation and error correction tasks
require a large amount of syntactic and semantic information, which are generally embedded in
higher-level encoder layers (Peters et al., 2018).
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Visualization of layer attention
In all tasks, higher decoder layers especially the 
uppermost ones pay more attention to the encoder 
embedding layer, which indicates that the surface 
representations potentially bring some additional 
useful features to the model performance.

Experimental Setup
Machine translation: WMT16 Romanian-English; WMT14 English-{German, French}
Text summarization: CNN/Daily Mail
Grammatical error correction: CONLL14

Contribution of individual encoder layer
• Masking the encoder embedding layer seriously 

harms the model performance in all tasks.
• Masking the encoder embedding layer consistently 

increases the length of generated output.
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However, we still cannot conclude that source representation bottleneck does exist in Seq2Seq models,
since the surface features might act as a noise regularizer to improve the robustness of encoder output
representations. To dispel the doubt, we further design two experiments to directly evaluate the
effectiveness of surface features at the encoder embedding layer.

Contribution of individual encoder layer In this experiment, we quantitatively analyze the be-
haviors change of a trained Seq2Seq model when masking a specific encoder layer (i.e. turning its
attention weight to zero and redistribute the other attention weights). Note that the masking operation
does not affect the information flow of encoding calculation, i.e. keeping Equation 1 unchanged.
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(a) Model performance
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(b) Length of output

Figure 2: Relative changes of (a) model performance and (b) length of output when masking
individual encoder layer in the trained Seq2Seq models. As seen, masking the embedding layer leads
to a significant drop of model performance and increase of output length.

Figure 2(a) shows the contribution of individual encoder layer to model performance. As seen,
masking the encoder embedding layer seriously harms the model performance in all tasks, which
confirms our claim that the surface features in the embedding layer are essential to Seq2Seq models.

Figure 2(b) shows the results on the output length. Masking the encoder embedding layer consistently
increases the length of generated output, which is especially significant for the summarization model.
One possible reason is that the instances in translation and correction tasks have similar input/output
lengths, while the summarization instances have distant input/output lengths.

By analyzing the model outputs, we found that the Seq2Seq models tend to generate some hallucina-
tory (i.e. fluent but unfaithful to the source) predictions (Lee et al., 2019; Wang & Sennrich, 2020)
when masking the embedding layer. Taking the correction task for an example, a right prediction
“anyone” was replaced by the hallucinatory prediction “friends of anyone” in the masked model, in
which the corresponding source contains no information related to “friends”. This issue becomes
worse in the summarization task, since the hallucinatory prediction is more likely to be a sentence.

The additional hallucinations will increase the output length and reduce the model performance. In
addition, Lee et al. (2019) point out that even if hallucinations occur only occasionally, the Seq2Seq
model may evidently lose user trust than other prediction problems, indicating the importance to fuse
surface features at the embedding layer. More cases are studied in Appendix A.2.

Expressivity of attended dimensions in the encoder embedding layer As shown in Figure 1,
the uppermost decoder layer pays most attention to the encoder embedding layer (i.e. the lower right
corner). If the embedding layer acts as a noise regularizer, the layer dimensions would be randomly
attended by the fine-grained model; otherwise, the dimensions of higher attention weights should be
distinguished from the other dimensions.

Starting from this intuition, we reordered the dimensions of the encoder embedding layer according
to the attention weights ŵM,0, and split it into two equal sub-embedding matrices, i.e. more attended
dimensions and less attended dimensions. We compared the expressivity of the two sub-embedding
matrices by the commonly-used singular value decomposition (Gao et al., 2019; Wang et al., 2019a;
Shen et al., 2020), in which higher normalized singular values denote that the embedding is more
uniformly distributed, thus are more expressive. The singular values are normalized by dividing them
by the largest value and their log scale values are reported for better clarity.
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Expressivity of attended dimensions in the 
encoder embedding layer
Comparing the expressivity of the sub-embedding 
matrices by the singular value decomposition, in 
which higher normalized singular values denote that 
the embedding is more uniformly distributed, thus 
are more expressive. FGLA indeed learns useful
surface features from the encoder embedding layer.

Main Results
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probability is calculated as:

P (yj |x) =
exp(1yj (er(yj ,x))/⌧)P
w2Vy

exp(1wer(yj ,x)/⌧)
(5)

where 1w(·) denotes an index function to take the logit of a target token y, and ⌧ denotes a softmax
temperature parameter to control the smoothness of the probability distribution P (yj |x). As ⌧
approaches to 0, the distribution tends to be an one-hot distribution representing the token of the
maximum probability. The distribution becomes uniform at a higher ⌧ .

Choices of fusion function � There are many variants of fusion methods (Gulcehre et al., 2015;
Sriram et al., 2017; Stahlberg et al., 2018). The aim of this paper is not to explore this whole space but
simply to show that two fairly straightforward implementations works well and that SurfaceFusion
helps for sequence-to-sequence models:

Hard fusion: �hard = � logP (yj |y<j ,x) + (1� �) logP (yj |x) (6)
Soft fusion: �soft = log(softmax(E(yj |y<j ,x) + logP (yj |x)) (7)

where � is a pre-defined interpolation weight, and E(yj |y<j ,x) is the pre-softmax logit of the
probability P (yj |y<j ,x). Compared to hard fusion, soft fusion removes the need for manually
setting the hyperparameter �.

The proposed SurfaceFusion method is easy to use. There are only two additional hyperparameters,
i.e. � (Equation 6) and ⌧ (Equation 5). We find that � is sensitive to the corpus scale but insensitive
to the relationship of input/output domain, which was set to 0.9 for the En-De, En-Fr and correction
tasks, and 0.8 for the Ro-En and summarization tasks. For ⌧ , it was set to 5 for soft fusion and 1 for
hard fusion across different benchmarks. We kept other settings all the same with the vanilla models.
In practice, we observed an additional 10% inference latency with the introduction of SurfaceFusion.

4.2 EXPERIMENTAL RESULTS

Table 2: Results of the proposed SurfaceFusion methods on the Seq2Seq tasks. “FGLA” denotes
fine-grained layer attention. The existing results are Ghazvininejad et al. (2019) for Ro-En, Ott et al.
(2018) for En-De and En-Fr, Ott et al. (2019) for summarization, and Chollampatt & Ng (2018) for
correction. All reported scores are the higher the better.

Translation Summarization Correction
Ro-En En-De En-Fr RG-1 RG-2 RG-L Prec. Recall F0.5

Existing 34.0 29.3 43.2 40.1 17.6 36.8 65.5 33.1 54.8

Vanilla 33.8 28.9 43.4 40.4 17.7 37.2 64.7 33.2 54.3
FGLA 34.5 29.1 43.5 40.8 18.0 37.5 67.7 31.9 55.3

Hard fusion 35.1 29.5 43.9 40.9 18.2 37.7 67.0 34.4 56.3
Soft fusion 34.0 29.0 43.6 41.0 18.3 37.9 66.8 35.0 56.6

Model performance Table 2 lists the results of the proposed approach on different tasks. In
addition to the vanilla Seq2Seq model (“Vanilla”), we also report the results of existing studies on
the same datasets (“Existing”) for better comparison. Our re-implementation of the vanilla models
matches the results reported in previous works, which we believe make the evaluation convincing.

Clearly, the proposed fusion approaches outperform the baselines (i.e. “Vanilla” and “FGLA”) in all
cases, while there are still considerable differences among model variations. Hard fusion performs
better on the translation tasks, while soft fusion is superior on the summarization and correction tasks.
Unlike hard fusion that performs at the probability level, soft fusion performs at the logit level to
provide an earlier and direct way for fusing surface features, which might be a better solution for the
tasks with a similar input/output domain.
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Vanilla Model vs. EncoderFusion
Vanilla Model

Encoder Fusion: FGLA

SurfaceFusion: Directly Exploit Source
Embedding for Decoder

We rewrite 𝑷 𝒚𝒋 as a fused probability with the 
second condition term x:

where Φ(·) is a fusion method. 𝒓 𝑦, , 𝒙 denotes
the surface feature calculated by an extra attention
module and 2𝒓 𝑦, , 𝒙 denotes its logit version
transformed by the pre-softmax weight. We use τ
to control the sharpness of the probability
distribution. As τ approaches to 0, the distribution 
tends to be a one-hot distribution representing the 
token of the maximum probability. The distribution 
becomes uniform at a higher  τ.

Choices of Fusion Function
Hard Fusion:
Soft Fusion:

where λ is an interpolation weight, and E y- y.-, x
is the pre-softmax logit of the probability 
P y- y.-, x . Compared to hard fusion, soft fusion 
removes the need for manually setting the 
hyperparameter λ.
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Table 3: Cosine similarities between aligned
source and target word embeddings. “All” and
“Non-Shared” denotes keeping or removing the
aligned pair when the source and target words are
the same, which are easier to be aligned.

All Non-Shared
Vanilla 0.602 0.338

SurfaceFusion 0.650 0.417

Closeness of word embeddings SurfaceFu-
sion shortens the path distance between source
and target embeddings, which can help to learn
better bilingual embeddings with direct inter-
actions. Table 3 shows the cosine similarities
between the tied source and target embeddings
on the Ro-En translation task.

In the experiment, we first train an additional
aligner (i.e. fast-align (Dyer et al., 2013)) on the
training corpus and use the alignment links to construct a word dictionary. The results calculated over
the dictionary show that the relationship between the source and target embedding becomes much
closer (i.e. high cosine similarities). This can help each other to learn better representations, and has
been validated to be beneficial for Seq2Seq models (Press & Wolf, 2017; Liu et al., 2019).

Expressivity of word embeddings In this experiment, we quantitatively evaluate the expressivity
of the word embeddings learned by different models using the singular value decomposition. The
related experimental details and executions are similar to that of Figure 3.

Figure 4: Log scale singular values of
the embeddings.

Figures 4 shows the results of the tied source and target
embeddings on the Ro-En translation task. The word em-
beddings of the vanilla model have fast decaying singular
values, which limits the representational power of embed-
dings to a small sub-space. The SurfaceFusion model slows
down the decaying and the singular values become more
uniformly distributed, which demonstrates that the fused
surface features remarkably enhance the representation
learning of embeddings. This provides a better starting
point for the model to effectively extract surface and ab-
stract features, which leads to an improvement of model
performance.

5 RELATED WORK

EncoderFusion in Seq2Seq Lower encoder layers that embed useful surface features are far away
from the training signals, which poses difficulty for deep Seq2Seq models to exploit such useful
features. Although residual connections (He et al., 2016) have been incorporated to combine layers,
these connections have been “shallow” themselves, and only fuse by simple, one-step operations (Yu
et al., 2018). In response to this problem, several approaches have been proposed to fuse the encoder
layers with advanced methods, such as layer attention (Bapna et al., 2018; Shen et al., 2018; Wang
et al., 2019c), layer aggregation (Dou et al., 2018; Wang et al., 2018a; Dou et al., 2019; Li et al.,
2020), and layer-wise coordination (He et al., 2018; Liu et al., 2020). Although these methods show
promising results on different NLP tasks, not much is known about how the EncoderFusion works. In
addition, some other studies show that exploiting low-layer encoder representations fail to improve
model performance (Domhan, 2018).

In this paper, we consolidate the conflicting conclusions of existing studies by pointing out that
the encoder embedding layer is the key, which can help Seq2Seq models to precisely predict target
words. Based on this finding, we propose a novel SurfaceFusion to directly connecting the encoder
embedding layer and the softmax layer, which consistently outperform current EncoderFusion
approaches across different NLP tasks.

Variants of Feature Fusion Feature fusion aims to merge two sets of features into one, which is
frequently employed in CV tasks, such as semantic segmentation (Long et al., 2014; Chen et al.,
2018a; Zhang et al., 2018) and object detection (Pinheiro et al., 2016; Lin et al., 2017). Zhang et al.
(2018) shows that simply fusing surface and abstract features tends to be less effective due to the gap
in semantic levels.

For NLP tasks, researchers investigated fusion models for language understanding (Lu & Li, 2013;
Hu et al., 2014; Peters et al., 2018) and language generation (Gulcehre et al., 2015; Sriram et al., 2017;
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Closer Relationship between Word
Embeddings
SurfaceFusion shortens the path distance 
between source and target embeddings, which 
can help to learn better bilingual embeddings 
with direct interactions. This can help the
source and target embeddings to learn better 
representations, and has been validated to be 
beneficial for Seq2Seq models [5].

More Expressive Word Embeddings
The singular values of SurfaceFusion become 
more uniformly distributed, which demonstrates 
that the fused surface  features enhance  the
representation learning of embeddings.This 
provides a better starting point for the model 
to effectively extract surface and abstract 
features, which leads to an improvement of 
model performance.
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(a) Translation: Ro-En (b) Summarization (c) Correction

Figure 3: Log scale singular values of the three sub-embedding matrices in the fine-grained layer
attention models. Higher log eigenvalues denote more expressivity of the dimensions.

Figure 3 depicts the singular value results. For comparison, we also report the values of the randomly
selected dimensions. Clearly, the more attended dimensions are most expressive, while the less
attended dimensions are least expressive. These results demonstrate that the fine-grained attention
model indeed extracts useful surface information from the encoder embedding layer, which does not
play the role of a noise regularizer.

From the above experiments, we prove that the encoder embedding layer indeed provides useful
surface information, which is not fully exploited by the standard Seq2Seq models.

4 OUR METHOD

In Section 3, we show that the uppermost decoder layer requires more surface features for better
representation learning. One possible reason is that the uppermost decoder layer is used for predicting
individual target token, which naturally benefits from more token-level surface features than sequence-
level abstract features. To validate this assumption, we simplify fine-grained layer attention that
only the uppermost decoder layer can attend to the embedding layer and output layer of the encoder.
Empirical results show that the simplified variant works on par with the original one, revealing that
the surface features embed at the source embedding layer is expressive.

Although layer attention model partially alleviates source representation bottleneck, it potentially
introduces unnecessary intermediate encoder representations. To address this gap, we propose
to directly connect the decoder softmax layer and the encoder embedding layer with a simple
SurfaceFusion method.

4.1 SURFACEFUSION

Seq2Seq learning aims to maximize the log-likelihood of a target sequence y given a source sequence
x. In practice, it factorizes the likelihood of the target sequence into individually token likelihoods:

ŷ = argmax
JY

j=1

logP (yj) = argmax
JY

j=1

logP (yj |y<j ,x) (3)

We rewrite P (yj) as a fused probability with the second condition term x:

logP (yj) = �
�
P (yj |y<j ,x), P (yj |x)

�
(4)

where �(·) is a fusion method that will be described later, and P (yj |x) is a probability conditioned
on the source surface features. Specifically, we employ a multi-head dot-product attention net-
work (Vaswani et al., 2017) with a decoder output representation yM

j as a query, encoder output
representations XN as keys , and encoder surface representations Xemb as values, to calculate a
surface representation r(yj ,x).

Then we use the pre-softmax weight V 2 Rd⇥|Vy| of the vanilla model to transform the surface
representation r(yj ,x) 2 Rd into a pre-softmax logit er(yj ,x) 2 R|Vy|. The final surface constraint
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probability is calculated as:

P (yj |x) =
exp(1yj (er(yj ,x))/⌧)P
w2Vy

exp(1wer(yj ,x)/⌧)
(5)

where 1w(·) denotes an index function to take the logit of a target token y, and ⌧ denotes a softmax
temperature parameter to control the smoothness of the probability distribution P (yj |x). As ⌧
approaches to 0, the distribution tends to be an one-hot distribution representing the token of the
maximum probability. The distribution becomes uniform at a higher ⌧ .

Choices of fusion function � There are many variants of fusion methods (Gulcehre et al., 2015;
Sriram et al., 2017; Stahlberg et al., 2018). The aim of this paper is not to explore this whole space but
simply to show that two fairly straightforward implementations works well and that SurfaceFusion
helps for sequence-to-sequence models:

Hard fusion: �hard = � logP (yj |y<j ,x) + (1� �) logP (yj |x) (6)
Soft fusion: �soft = log(softmax(E(yj |y<j ,x) + logP (yj |x)) (7)

where � is a pre-defined interpolation weight, and E(yj |y<j ,x) is the pre-softmax logit of the
probability P (yj |y<j ,x). Compared to hard fusion, soft fusion removes the need for manually
setting the hyperparameter �.

The proposed SurfaceFusion method is easy to use. There are only two additional hyperparameters,
i.e. � (Equation 6) and ⌧ (Equation 5). We find that � is sensitive to the corpus scale but insensitive
to the relationship of input/output domain, which was set to 0.9 for the En-De, En-Fr and correction
tasks, and 0.8 for the Ro-En and summarization tasks. For ⌧ , it was set to 5 for soft fusion and 1 for
hard fusion across different benchmarks. We kept other settings all the same with the vanilla models.
In practice, we observed an additional 10% inference latency with the introduction of SurfaceFusion.

4.2 EXPERIMENTAL RESULTS

Table 2: Results of the proposed SurfaceFusion methods on the Seq2Seq tasks. “FGLA” denotes
fine-grained layer attention. The existing results are Ghazvininejad et al. (2019) for Ro-En, Ott et al.
(2018) for En-De and En-Fr, Ott et al. (2019) for summarization, and Chollampatt & Ng (2018) for
correction. All reported scores are the higher the better.

Translation Summarization Correction
Ro-En En-De En-Fr RG-1 RG-2 RG-L Prec. Recall F0.5

Existing 34.0 29.3 43.2 40.1 17.6 36.8 65.5 33.1 54.8

Vanilla 33.8 28.9 43.4 40.4 17.7 37.2 64.7 33.2 54.3
FGLA 34.5 29.1 43.5 40.8 18.0 37.5 67.7 31.9 55.3

Hard fusion 35.1 29.5 43.9 40.9 18.2 37.7 67.0 34.4 56.3
Soft fusion 34.0 29.0 43.6 41.0 18.3 37.9 66.8 35.0 56.6

Model performance Table 2 lists the results of the proposed approach on different tasks. In
addition to the vanilla Seq2Seq model (“Vanilla”), we also report the results of existing studies on
the same datasets (“Existing”) for better comparison. Our re-implementation of the vanilla models
matches the results reported in previous works, which we believe make the evaluation convincing.

Clearly, the proposed fusion approaches outperform the baselines (i.e. “Vanilla” and “FGLA”) in all
cases, while there are still considerable differences among model variations. Hard fusion performs
better on the translation tasks, while soft fusion is superior on the summarization and correction tasks.
Unlike hard fusion that performs at the probability level, soft fusion performs at the logit level to
provide an earlier and direct way for fusing surface features, which might be a better solution for the
tasks with a similar input/output domain.
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