Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning
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Introduction Understanding Encoder Layer Fusion (EncoderFusion)
Problems Visualization of layer attention 1 75 6 1 75785 6 1 75785 6

Source Representation Bottleneck

Seq2Seq decoder only takes the abstract representations at uppermost layer as input,
which ignores other usefully surface representations at other layers. We hypothesize
that its limited representation capacity may not sufficiently model those surface features
from lower encoder layers, especially the embedding layer. We call such an issue as
source representation bottleneck.

* Other studies show that attending to lower encoder layers (excluding the Fine-grained Layer Attention (FGLA) Contribution of individual encoder layer
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* Recent studies reveal that fusing the intermediate encoder layers
(EncoderFusion) is beneficial for sequence-to-sequence (Seq2Seq) models,
such as layer aggregation [ 1], layer-wise coordination [2] and layer attention
[3]. Despite its effectiveness, not much is known about how fusing encoder
layer representations work.

In all tasks, higher decoder layers especially the
uppermost ones pay more attention to the encoder
embedding layer, which indicates that the surface
representations potentially bring some additional
useful features to the model performance.
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